arXiv:2002.01847v1 [cs.CR] 5 Feb 2020

Zendoo: a zk-SNARK Verifiable Cross-Chain
Transfer Protocol Enabling Decoupled and
Decentralized Sidechains

Alberto Garoffolo Dmytro Kaidalov
alberto@horizen.global dmytro.kaidalov@iohk.io
Horizen I0HK Research

Roman Oliynykov
roman.oliynykov@iohk.io
IOHK Research
V.N.Karazin Kharkiv National University

January 2020

Abstract

Sidechains are an appealing innovation devised to enable blockchain scalability and extensibility.
The basic idea is simple yet powerful: construct a parallel chain — sidechain — with desired
features, and provide a way to transfer coins between the mainchain and the sidechain.

In this paper, we introduce Zendoo, a construction for Bitcoin-like blockchain systems that al-
lows the creation and communication with sidechains of different types without knowing their in-
ternal structure. We consider a parent-child relationship between the mainchain and sidechains,
where sidechain nodes directly observe the mainchain while mainchain nodes only observe cryp-
tographically authenticated certificates from sidechain maintainers. We use zk-SNARKs to
construct a universal verifiable transfer mechanism that is used by sidechains.

Moreover, we propose a specific sidechain construction, named Latus, that can be built on top
of this infrastructure, and realizes a decentralized verifiable blockchain system for payments. We
leverage the use of recursive composition of zk-SNARKSs to generate succinct proofs of sidechain
state progression that are used to generate certificates’ validity proofs. This allows the mainchain
to efficiently verify all operations performed in the sidechain without knowing any details about
those operations.

Contents

6

7

Introduction

1.1 Related Work e

Preliminaries

2.1 Cryptographic Definitions
2.2 Recursive SNARKs Composition for State Transitions

General Overview

3.1 Main Components of a Sidechain Design

Zendoo: a Cross-Chain Transfer Protocol for Sidechains

4.1 Cross-Chain Transfer Protocol
4.1.1 Forward Transfers
4.1.2 Backward Transfers

4.1.2.1 Mainchain Managed Withdrawals

4.1.2.2 Withdrawal Safeguard

4.1.3 Sidechain Transactions Commitment

4.2 Bootstrapping Sidechains L Lo

The Latus Sidechain

5.1 Consensus Protocol
5.1.1 Withdrawal Epochs

5.2 Accounting Model and System State
5.2.1 System State Lo o

5.3 Transactional Model,
5.3.1 Payment Transaction.
5.3.2 Forward Transfers Transaction
5.3.3 Backward Transfer Transaction
5.3.4 Backward Transfer Requests Transaction

5.4 State Transition Proof
5.4.1 Performance and Incentives

5.5 Cross-Chain Transfer Protocol
5.5.1 Mainchain Block Reference
5.5.2 Forward Transfers
5.5.3 Backward Transfers
5.5.3.1 Withdrawal Certificate

5.5.3.2 Backward Transfer Request

5.5.3.3 Ceased Sidechain Withdrawal

Conclusions

Acknowledgments

Appendix A MST Delta

w

10
10
11
14
16
16
17

18
18
21
22
22
23
23
24
25
26
27
29
29
29
31
31
32
34
35

36

36

38

1 Introduction

Since the inception of the Bitcoin cryptocurrency in 2008 [20], the topic of decentralized ledger
technology has received significant attention among experts from various areas. Bitcoin became
the first decentralized payment system based on peer-to-peer networking. Its key feature — the
absence of centralized control — is claimed to be the disruptive innovation that will help build
more robust, fair, and transparent financial systems. Bitcoin inspired the appearance of many
other systems based on the same principle of decentralization with a variety of different features.

With the increasing use of Bitcoin and similar blockchain systems, their inherent limitations
became apparent: limited throughput, increased latency, reduced ability to scale and expand
functionality, etc. [10]. Even more important is that such decentralized systems are challenging
to update since there is no single decision-making entity. Even a small protocol change requires
a cumbersome process of community agreement, which makes the introduction of new features
difficult.

Sidechains, proposed by A. Back et.al. in 2014 [5], is an appealing concept that allows one
to work around the constraints of a single decentralized blockchain. The basic idea is simple:
to create a separate blockchain with whatever functionality is needed and provide a way to
communicate with the main blockchain (Fig. 1). Communication means the ability to transfer
a mainchain native asset (e.g. bitcoins) to and from a sidechain.

Main Blockchain (e.g. Bitcoin)

i Sidechain A (smart contracts) ; Sidechain B (fast transactions) ; Sidechain C (governance) :

-OHHHE- R g B I - O

Figure 1: Sidechains. The main blockchain provides basic cryptocurrency functionality while
sidechains implement specific functions.

This way, for instance, a blockchain system, like Bitcoin, can be extended with additional
functionalities (such as smart contracts [3]) implemented in a separate sidechain, which uses the
same native asset, hence remaining in the Bitcoin ecosystem.

In this paper, we propose Zendoo, a universal construction for Bitcoin-like blockchain systems
that allows the creation and communication with sidechains of different types without knowing
their internal structure (e.g. what consensus protocol is used, what types of transactions are
supported, etc.). In fact, the sidechain may not even be a blockchain but can be any system
that uses the standardized method to communicate with the mainchain.

Specifically, we consider a parent-child relationship between the mainchain and sidechains,
where sidechain nodes directly observe the mainchain while mainchain nodes only observe cryp-
tographically authenticated certificates from sidechain maintainers. Among other things, such
certificates authorize transfers coming from sidechains. Certificate authentication and validation
are achieved by using zk-SNARKs [0], which enable constant-sized proofs of arbitrary compu-
tations. The main feature of our construction is that sidechains are allowed to define their own
zk-SNARKSs, thus establishing their own rules for authentication and validation. The fact that
all zk-SNARK proofs comply with the same verification interface used by the mainchain enables
great universality as the sidechain can use an arbitrary protocol for authenticating its certifi-
cates. E.g., the sidechain may adopt a centralized solution where the zk-SNARK just verifies

that a certificate is signed by an authorized entity (like in [5]) or, for instance, a decentralized
chain-of-trust model as in [13].

Moreover, we propose a specific sidechain construction, named Latus, that can be built on
top of this infrastructure, and realizes a decentralized verifiable blockchain system. We leverage
the use of recursive composition of zk-SNARKSs to generate succinct proofs of sidechain state
progression (as in [19]) that are used to generate certificate proofs for the mainchain. This allows
the mainchain to efficiently verify all operations performed in the sidechain without knowing
any details about those operations.

The paper is structured in the following way: section [2] provides basic definitions that are
used throughout the paper; section [3] provides a general overview of the sidechain concept;
section [4] provides details about the proposed cross-chain communication protocol Zendoo and
introduces basic interfaces imposed by the mainchain side; section [5] provides details of the
Latus sidechain construction.

1.1 Related Work

The concept of sidechains was first introduced by A. Back et.al. in 2014 [5]. They introduced
a general notion of a 2-way peg and described two operational modes — synchronous and asyn-
chronous — to implement interactions between pegged chains. The synchronous mode implies
that both main and side chains are aware of each other and can verify transfer transactions
directly, while the asynchronous mode relies on validators to process transfers.

Notable construction of sidechains was presented in [25, 18] and called Drivechains. It
aims to deploy sidechains on top of the Bitcoin network. While forward transfers (from the
mainchain to a sidechain) are processed by providing SPV proofs (like the synchronous mode in
[0]), backward transfers rely upon validators. Validators in Drivechains are mainchain miners
who observe sidechains and endorse transfers.

The first formal treatment of sidechains was proposed by P. Gazi, A. Kiayias, and D. Zindros
in [13]. In addition, they presented a sidechain construction for proof-of-stake blockchains where
sidechain nodes directly observe and confirm forward transfers while backward transfers are
confirmed by certifiers chosen among sidechain block forgers.

Our previous proposal on sidechains [2] presents a flexible model which allows the construc-
tion of different types of sidechains whose internal structures are unknown to the mainchain.
It relies on certifiers to confirm backward transfers in the mainchain. Though, in this model
certifiers are chosen randomly from a pool of certifiers registered directly in the mainchain.

Mentioned constructions differ from our current proposal in various aspects, most notably
because they either assume that the mainchain observes sidechains directly or relies on some
intermediary to confirm transfers. In addition, they do not provide flexibility (except [12]),
which means that a sidechain construction (e.g. consensus protocol) cannot be chosen freely.

In [16], A. Kiayias and D. Zindros proposed implementation of the sidechain protocol for
the proof-of-work blockchains based on smart contracts. Another notable sidechain construc-
tion that relies on smart contracts is called Plasma and was presented in [22] by J. Poon and
V. Buterin. On the contrary, our construction does not rely on smart contracts.

One of the main features of the construction presented in this paper is the usage of zk-
SNARKSs for enabling verifiable cross-chain communication. zk-SNARK has initially been pro-
posed as a zero-knowledge protocol which allows proving possession of some information without
revealing it [0]. However, this technique is suited for more than simply securing information but
also for solving scalability issues: it enables succinct constant size proofs of almost arbitrary
computations. For instance, using the recursive composition of zk-SNARKs [19,] it is possible

to construct a succinct proof of state transition virtually for any number of transactions. We
were inspired by these techniques while designing our sidechain construction.

A notable sidechain construction that also relies on zk-SNARKs is ZK Rollup [11]. It is a
layer 2 solution based on smart contracts for scaling transaction throughput in Ethereum [2].
The basic idea is that transactions are carried out off-chain while the information about entailed
state transitions together with a zk-SNARK proof of their validity is submitted to the contract.
It still requires submission of some limited information about each transaction on-chain to
prevent data availability attacks thus limiting scalability. Our construction differs from ZK
Rollup in many aspects, most notably because we do not push sidechain transaction data to the
mainchain.

There are many other attempts to construct cross-chain transfer mechanisms including the
Liquid project [9], Polkadot [30], Interledger [27], Cosmos [!], and many others. They propose
various solutions that are different from our construction.

2 Preliminaries

In this section, we introduce definitions of several cryptographic constructions that are used
throughout the paper. We defer formal descriptions (especially of the recursive SNARKS com-
position) for a separate paper and define here only basic notations needed to describe the
proposed sidechain construction.

2.1 Cryptographic Definitions

Definition 2.1. Collision-Resistant Hash Function (CRH). A hash function H is collision-
resistant if the probability of finding two different input strings a and b such that H(a) = H(b)
is negligible (more formal definition can be found, e.g., in [15]).

Whenever we refer to a hash function, we suppose it is collision-resistant.

Definition 2.2. Merkle Hash Tree (MHT). The Merkle Hash Tree, or simply Merkle Tree
(MT), is a binary tree data structure where the value of an internal node is computed as the
hash of values of its children, and the value of a leaf node is the direct hash of a data block
represented by this leaf (see Fig. 2) [23, 21].

h,=H(h,, | h

22)

h,,= H(data,)
Lha] Lhe | [P] [Pee] [P] [P] [her | | s]
T T T T T T T
data, data, data, data, data, data, data, data,

Figure 2: Merkle Hash Tree.

We call the top-level node (hy in Fig. 2) the root hash of the MHT. Given that a collision-
resistant hash function is used to calculate tree nodes, we can consider root hash as a tree

authenticator: it is impossible to tamper even a single bit of data in the tree without also
changing the root hash.

An important feature of the Merkle tree structure is that it produces a concise proof of a
particular data block’s membership in a tree with the particular root hash. E.g., if one wants to
prove that datay (Fig. 2) is included in the MHT tree with the root hash hj, they just need to
provide a verifier with the data block along with a tuple of internal nodes (has, h31, hoo) that will
allow recalculating the tree root and comparing it to the provided root h;. We call it Merkle
proof.

Definition 2.3. Succinct Non-Interactive Argument of Knowledge (SNARK).

A SNARK is a proving system consisting of a triplet of algorithms (Setup, Prove, Verify) that
allows proving satisfiability of a set of inputs to an arithmetic constraint system (see, e.g., [0, 7]
for more formal definition and properties analysis).

We define an arithmetic constraint system as a set of polynomials over a finite field F' in
variables (1, ..., 2, Y1, ..., Ys). A satisfying assignment for the given constraint system C' is an
assignment of F' elements to x; and y; such that all polynomials evaluate to zero. We indicate
a satisfying assignment as C'(a,w), where a = (a1, ...,a,), a; € F and w = (wy, ..., ws), w; € F.
We refer to a as public input and w as witness.

Then, the algorithms (Setup, Prove, Verify) are defined such that

1. (pk,vk) + Setup(C,1*) bootstraps SNARK for a constraint system C under security
parameter A. The bootstrapped SNARK is specified by a pair of keys (pk, vk) which
are a proving key and a verification key correspondingly.

2. w < Prove(pk,a,w) evaluates a proof m, which confirms that (a,w) is a satisfying
assignment for C.

3. true/ false + Verify(vk,a,) verifies that 7 is a valid proof attesting to the satisfying
assignment (a,w) for the constraint system C.

Algorithms (Setup, Prove, Verify) satisfy the following properties:

1. Completeness. For any constraint system C and (a,w), if 7 < Prove(pk,a,w) is a
valid proof, then Verify(vk,a,) is always true.

2. Knowledge soundness. If a pair (a,w) is not a satisfying assignment for C, then
the probability of obtaining 7 such that Verify(vk, a,m) = true is negligible.

3. Succinctness. For every constraint system C bootstrapped with (pk,vk) and every
a € F", the size of a proof and verification time is polynomial in .

2.2 Recursive SNARKs Composition for State Transitions

Here, we provide a high-level definition of the recursive proof composition technique that is used
in our sidechain model to construct succinct proofs of state transitions. The idea of recursive
proofs has been discussed, e.g., in [0, 19, 8]. What follows is based principally on the construction
described in [19].

Definition 2.4. State Transition System. A state transition system is defined by a set of
all possible states S, a set of all possible transitions 7', and a transition function update(t;, s;),
where s; € S and t; € T, which returns a new state s,41 or L in case (¢;, s;) does not constitute
a valid input for the update function.

Speaking informally, we would like to define a SNARK that attests to many iterative state
transitions. E.g., if we have transitions (¢1,ts, ..., t,) that are applied sequentially to state s; to

produce state s,11, we would like to have a succinct proof of the following statement: “there
exist such ({1, ..., t,) so that update(t,, update(t,—1,update(..., update(ti, s1)))) = Sny1”-

By applying this to blockchain, we will be able to provide succinct proofs of transition
between some states s; and s; (i < j). The state can be represented, for instance, as a list
of unspent transaction outputs [29], while transitions are regular blockchain transactions that
spend some outputs and create new ones. This construction is of great value for verifiable
sidechains.

Definition 2.5. Recursive SNARKSs for state transition systems. We define recursive
SNARKS composition as a tuple of SNARKs (Base, Merge) such that:

1. Base is a SNARK for a single transition that proves the existence of such t so that
Si+1 = update(t, s;). It is defined by a triplet (Setup, Prove, Verify) such that:

o (pkBase ykBase) « Setup(1*) bootstraps Base SNARK;

o B¢ « Prove(pkBe, (s;,5,11), (t;)) evaluates a proof 752%¢ that confirms s;,; =
update(t;, s;);

o true/false < Verify(vkPe¢ (s;, si41), 72%%¢) verifies that w5%%¢ is a valid proof
attesting state transition from s; to s;y1.

2. Merge is a SNARK that merges two other SNARKS (either Base or Merge) proving the
validity of transition between states s; and s; (i +1 < j). It is defined by a triplet (Setup,
Prove, Verify) such that:

o (pkMerge ykMerge) < Setup(1*) bootstraps Merge SNARK;

o mMerge « Prove(pkMeroe (s;,s;), (sk, ¢, 75)) evaluates a proof mM€r9¢ that con-
firms 7§, 7§ are valid SNARKSs (a € {Base, Merge}), which attest state transitions
from s; to s and from s to s; correspondingly. Altogether, it proves a valid transi-
tion from s; to s; (1 < k < j);

o true/false + Verify(vkMeroe (s;,s;), nMer9¢) verifies that m™¢r9¢ is a valid proof
attesting state transition from s; to s;,7 < j.

We intentionally omit specifics of the recursive SNARKs composition, which in reality is
more sophisticated. More details on the topic can be found, for instance, in [19, 3]. We defer
the details of our construction for a separate paper. At this point, we provided only basic
definitions, which allow us to describe the sidechain protocol while abstracting away the details
of the SNARKSs construction.

3 General Overview

This section gives an overview of the sidechain concept in general and the main components of
any sidechain design. We also briefly discuss our proposed solutions.

Before going any further, we want to introduce abstract definitions of the terms mainchain
and sidechain that are used throughout this paper.

Definition 3.1. Mainchain (MC). The mainchain is a blockchain system based on the Bitcoin
backbone protocol model [I1], which maintains a public ledger of asset-transfer transactions.
Additionally, the mainchain supports a standardized mechanism to register and interact with
separate sidechain systems. By interaction, we mean the cross-chain transfer protocol, which
enables sending a native asset to a sidechain and receiving it back in a secure and verifiable way
without the need to know anything about the internal sidechain construction or operations.

Definition 3.2. Sidechain (SC). The sidechain is a separate system attached to the mainchain
by means of a cross-chain transfer protocol.

Speaking informally, we consider the mainchain to be a blockchain platform that supports
basic payment functionality with some native asset Coin (e.g. Bitcoin [20], Horizen [20], etc.).
Then, the sidechain is an attached domain-specific platform that also uses the Coin asset (but
not limited to it). In our model, we consider a single mainchain with many sidechains attached
to it.

The definition of a sidechain (as in Def. 3.2) does not imply the usage of any particular
data structure or consensus algorithm. The mainchain is totally agnostic to the sidechain
construction. It can be another decentralized blockchain, some centralized database maintained
by the predefined authority, or more generally, an arbitrary application.

The need to introduce sidechains in a general payment-based blockchain system comes from
the need to allow the creation of different blockchain applications that use the same mainchain
asset. Creation of such applications directly on the mainchain is not always possible due to inher-
ent technological limitations, such as restricted throughput, expensive storage, etc. Sidechains
effectively solve these problems.

3.1 Main Components of a Sidechain Design

Analyzing existing attempts to design sidechains [12, 5, 25, 18, 16, 13, 11], we may outline three
basic components that underlie any sidechain architecture:

1. Mainchain consensus protocol (MCP).
2. Cross-chain transfer protocol (CCTP).

3. Sidechain consensus protocol (SCP).

Depending on a specific design, these components can be highly coupled with each other or
decoupled so that the mainchain is almost independent from any particular sidechain implemen-
tation.

In our construction, we aspire to multipurposeness and, thus, designing a system so that
the MCP and SCP are completely decoupled. The CCTP is naturally a bridge between them
and is unified and fixed by the mainchain consensus protocol. On the other end, the SCP can
be freely defined by a sidechain developer. This allows a variety of different sidechains with
different purposes to thrive while not requiring any changes to the mainchain.

Cross-chain transfer protocol. The CCTP protocol defines the communication between
the mainchain and sidechain(s). Basically, it is a 2-way peg protocol that allows sending coins
back and forth. At a high level, it defines two basic operations:

e Forward Transfer, and

e Backward Transfer.

A forward transfer sends coins from the mainchain to a sidechain. A backward transfer,
correspondingly, moves coins back from the sidechain to the mainchain. These operations are the
cornerstone of overall sidechain construction. The backward transfer is of particular importance
since we do not want to oblige the mainchain to track sidechains and, thus, it cannot directly
verify the validity of withdrawals coming from them. That is why most of the focus in developing
sidechains is directed toward constructing secure and reliable backward transfers.

In our approach, Zendoo, we consider a forward transfer as a special transaction on the
mainchain that destroys coins and provides sidechain-specific metadata allowing a user to receive

coins in the sidechain. Implementation of forward transfers is straightforward as it does not
require the mainchain to know anything about the sidechain state for validation.

A more complex procedure is required for backward transfers. They are initiated in the
sidechain as special transactions, batched in a withdrawal certificate, and propagated to the
mainchain for processing. Since we do not want the MC to follow the SC state — as this
would impose enormous computational and storage burden on the MC and, thus, undermine the
whole point of having sidechains — the question arises how to implement validation of backward
transfers in the most efficient and secure way.

In our previous paper [!?2], this problem has been addressed by introducing into the system
a special type of decentralized actors — certifiers — that were registering themselves in the MC
and were responsible for signing withdrawal certificates. Although the safety of this approach
has been shown, it requires certain assumptions about an honest majority of certifiers, which,
in some scenarios, may not be the case.

In Zendoo, we avoid direct reliance on certifiers or any other special type of actors assigned to
validate withdrawal certificates. Instead, we are going to leverage SNARKs [0, 7, 19] to provide
means for the mainchain to effectively validate withdrawals.

Sidechain consensus protocol. We consider the SCP as a generalized notion that encom-
passes all the details about a particular sidechain construction such as consensus algorithm,
accounting system, types of supported transactions, incentives mechanism, a protocol for with-
drawal certificate generation, etc. Also, importantly, each sidechain defines its own SNARK!
that is used to validate withdrawal certificates. This provides flexibility to define its own rules
for backward transfers. For instance, a sidechain can adopt a chain-of-trust model [13] or even
the certifiers model [12]. It is completely decoupled from the mainchain consensus protocol,
which will just invoke a unified verifier to validate a proof.

Even though the SCP can be designed in different ways, we propose one specific construction
of a decentralized verifiable sidechain based on the Ouroboros protocol [17]. We will call this
construction Latus. In short, we are going to use recursive composition of SNARKSs to generate
succinct proofs of sidechain state transitions. Each withdrawal certificate commits to the SC
state whereas the SNARK proof validates transition between states committed by successive
withdrawal certificates. Since backward transfers are a part of the sidechain state transition,
they are also validated by the proof.

The following section [4] introduces Zendoo, a cross-chain communication protocol for sidechains
which is principally about the definition of the transfer protocol and how a new sidechain can
be registered in the mainchain. It defines the sidechains design from the mainchain point of
view. Then, in section [5], we describe in detail the proposed sidechain construction Latus.

4 Zendoo: a Cross-Chain Transfer Protocol for Sidechains

The following section provides details about the communication protocol between the mainchain
and sidechains, which is primarily represented by the cross-chain transfer protocol. We show
how the CCTP protocol is integrated in the mainchain, what interfaces are provided, and how
a new sidechain can be created.

ISpeaking more formally, here, we refer to an arithmetic constraint system (arithmetic circuit) that is compiled
for each sidechain and defines the logic of the SNARK. Note that the interface of the verifier is defined by the
mainchain so — even though the internal logic of the SNARK may be different for different sidechains — generated
proofs can be verified in the standardized way.

4.1 Cross-Chain Transfer Protocol

The cross-chain transfer protocol is the cornerstone of our sidechain design as it connects the
mainchain with all sidechains spawned from it. Its main function is to allow sending coins
to sidechains and receiving them back in a secure and reliable way. This section provides a
high-level specification of forward and backward transfers and how they are integrated into the
mainchain.

4.1.1 Forward Transfers

The design of forward transfers is straightforward and similar to many existing proposals for
sidechains [5, 25, 18, 16, 13] as well as to our original proposal [12].

On the mainchain side, it is implemented as a special type of operation (we will call it Forward
Transfer) that destroys coins and provides metadata for withdrawing coins in a sidechain. Then,
it is the responsibility of the sidechain to sync forward transfers from the MC and issue the
corresponding amount of coins.

Definition 4.1. Forward Transfer (FT). Forward Transfer is an operation that moves coins
from the original blockchain A (the mainchain) to the destination sidechain B. It is represented
by a tuple of the form:

FT = (ledgerld, receiver Metadata, amount),

where:
ledgerld — a unique identifier of a previously created and active sidechain to
which coins are transferred;
amount — a number of coins to transfer;

receiver Metadata — some metadata for receiving sidechain B (e.g., a receiver’s address); its
structure is not fixed in the mainchain and can consist of different
variables of predefined types depending on a sidechain’s construction;
its semantic meaning is not known to the mainchain.

There can be several approaches to integrate forward transfers on the mainchain side de-
pending on its details. For instance, forward transfer can be a separate transaction type which
destroys coins in the mainchain, or, in the case of a UTXO-based blockchain system (e.g. Bit-
coin or Horizen), we can consider FT as a special unspendable transaction output in a regular
multi-input multi-output transaction [29, 4].

To be more specific and facilitate further reading, we assume that the mainchain has a
UTXO-based accounting model®>. Then, a regular transaction with forward transfers may have
the following structure:

2It is in line with our own implementation of sidechains, which is going to be deployed on the Horizen
mainchain.

10

type Transaction {
Inputs: {
Input(addr: 0x013A.., amount: 5, signature: 0x034B..),
Input(addr: 0x0930.., amount: 3, signature: Ox1AA1..),

}
Outputs: {
Output(addr: 0x023B.., amount: 1),
Output(addr: 0x0732.., amount: 2),
Forward Transfer (ledgerId: 0x300C.., receiverInfo : 0x139D.., amount: 2),
Forward Transfer(ledgerId: 0x300C.., receiverInfo: 0x893D.., amount: 3),

}
}

Given that an FT is a non-spendable output, it basically destroys coins in the mainchain,
and the amount of transferred coins is verified by the mainchain as part of the overall transaction
verification.

4.1.2 Backward Transfers

The backward transfer protocol allows coins to move from a sidechain to the mainchain, and, as
in [12] and [13], it relies on the idea of batched transfers. This means that all requested backward
transfers submitted to the sidechain during a certain period — called the “withdrawal epoch” —
are collected in a special withdrawal certificate and pushed to the mainchain for processing.

Withdrawal certificates are more than just a container for backward transfers, they are a
kind of sidechain heartbeat that is periodically submitted to the mainchain even though there
might be no backward transfers®.

A withdrawal epoch is defined by a range of MC blocks. Withdrawal epochs for different
sidechains are not aligned and may have a different length (epoch_len parameter is set upon
sidechain creation), and, therefore, the entire system runs asynchronously.

Let us define an MC block B that belongs to a specific epoch as B where ep_id is the
epoch number and j € [0, epoch_len) is the serial number of the block within the epoch (Fig. 3).

Withdrawal certificate Withdrawal certificate
for epoch i-1 for epoch i
] B! L] Bi] B e — B! B|+1] Bi+1] B|+1 e B|+1 | — — —
0 1 2 len-1 0 1 2 len-1
i-th withdrawal (i+1)-th withdrawal
epoch epoch

Figure 3: Withdrawal epochs in the mainchain. Note that withdrawal epochs for different
sidechains may not overlap. It depends on parameters that have been set upon sidechain cre-
ation.

The sidechain is obliged to submit a withdrawal certificate for epoch ¢ during the first
submit_len blocks of the epoch i + 1 (submit_len is a system parameter). If a withdrawal

3Later, in section [5], we will show how this can be leveraged to construct secure verifiable sidechains by
providing their state commitments as part of withdrawal certificates

11

certificate has not been submitted during this time, the sidechain is considered ceased (see
Def. 4.2) and no more withdrawal certificates for this sidechain will be accepted by the mainchain
(however, the funds can still be withdrawn with a ceased sidechain withdrawal [4.1.2.1]).

Definition 4.2. Ceased Sidechain. A sidechain is deemed ceased by the mainchain if a
withdrawal certificate for that sidechain has not been submitted on time, i.e. a certificate for
withdrawal epoch i has not been submitted during the first submit_len blocks of the epoch i41%.

Note that the mainchain consensus protocol does not impose any rules on how exactly a
withdrawal certificate should be generated and by whom it should be submitted. It is up to the
sidechain to define corresponding procedures. We only assume that it is submitted by means of
a special transaction in the mainchain.

As it has been mentioned, a withdrawal certificate contains backward transfers. We may
consider them as requests that are fulfilled once included in the withdrawal certificate and
propagated to the mainchain. There are no restrictions for how backward transfers should be
submitted and collected (e.g. it can be a separate transaction on the SC side).

Definition 4.3. Backward Transfer (BT). Backward Transfer is an operation that moves
coins from the sidechain B to the original mainchain A. It is represented by a tuple of the form:

BT (receiver Addr, amount),

where:

receiver Addr — an address in the mainchain where transferred coins should be credited;
amount — the number of transferred coins.

There can be different approaches to integrate backward transfers in the mainchain. Follow-
ing the assumption of a UTXO-based mainchain, a BT can be represented by a special output
in a transaction with a withdrawal certificate.

Definition 4.4. Withdrawal Certificate (WCert). Withdrawal certificate is a standard-
ized posting that allows sidechains to communicate with the mainchain. Its main functions
are:

1) delivering backward transfers to the MC; and

2) serving as a heartbeat message enabling the MC to identify SC status.
It is represented by a tuple of the form:

WCert & (ledgerld, epochld, quality, BT List, proofdata, proof),

where:

ledgerId — an identifier of the sidechain for which WCert is created;

epochld — a number of a withdrawal epoch;

quality ~ — an integer value that indicates the quality of this withdrawal certificate
(explained later);

BT List — alist of backward transfers included in this withdrawal certificate;

proofdata — input data to a SNARK verifier;

proof —a SNARK proof.

4Even though this requirement may seem strong, it is necessary to provide certain properties which we discuss
later. We also explore the possibility to provide more flexibility for withdrawal certificate submission

12

Now, we discuss in more detail the substance of certificate parameters as it is one of the
most important parts of the sidechain design.

As it has been briefly outlined, the basis of the proposed construction is that there are no
special entities that authorize withdrawal certificates (e.g., like certifiers in [12] or slot leaders
in [13]). Instead, the certificate authorization and validation rely completely on the included
SNARK proof, and the SNARK itself is defined by the sidechain. The mainchain knows only the
verification key — which is registered upon sidechain creation — and the interface of the verifier,
which is unified for all sidechains. If the SNARK proof and public parameters are valid, then
the certificate gets included and processed in the mainchain.

Withdrawal certificate quality. It might happen that several withdrawal certificates ap-
pear for the same sidechain in the same withdrawal epoch®. Since only one WCert should be
selected among them and given that the mainchain does not know about the sidechain consensus
protocol and does not track its state, there should be a mechanism for the mainchain to decide
which certificate is the best one. Such a mechanism is realized through the quality parameter:
the mainchain adopts a certificate with the highest quality or the one that was submitted first
in case there are several certificates with equal qualities. The validity of the quality parameter
is enforced by the SNARK proof.

Withdrawal certificate verification. Verification of a newly submitted WCert on the main-
chain is performed using the following basic rules:

_ WCert Verification

1. ledgerld should be an identifier of a currently active sidechain;

2. epochld should be a valid withdrawal epoch number for the ledgerId (remember
that the certificate should be submitted during the first submit_len blocks of the
epoch following the one, for which such certificate was created);

3. quality should be higher than the quality of the previously submitted withdrawal
certificate for this epoch; if it is the first WCert for this epoch - any quality is
accepted;

4. proof should be a valid SNARK proof whose verification key vkyy cert is set upon
sidechain registration;

SNARK verification is the most essential part of the verification procedure as it encapsulates
verification of backward transfers and other parameters provided within the certificate. The
basic SNARK verifier interface is the following:

true/ false < Verify(vkwcert, publiciinput, proof),
public_input def (weert_sysdata, M H (proofdata)),

where:

5Even though it should not happen under normal operation, it may be the case, for instance, if the sidechain
is a blockchain system, which experiences a continuous fork, or due to some malicious activity

13

vkwcert — a SNARK verification key registered upon the sidechain creation;

weert_sysdata — a part of the public input, which is unified for all sidechains and
enforced by the mainchain (explained further);
proofdata — a part of the input data that is defined by the sidechain and passed

along the withdrawal certificate; it is basically a list of variables of
predefined types whose semantics are not known to the mainchain;

MH (proofdata) — a root hash of a Merkle tree where leaves are variables from proofdata,; it
is essential for the SNARK to keep a list of public inputs short, thus we
combine them in a tree and pass the root hash only®;

proof — a SNARK proof itself submitted as a part of the certificate.

weceert_sysdata parameter plays an important role from the security standpoint. The idea is
to allow the mainchain to verify the proof against some public input parameters that are defined
by the protocol. For instance, the BTList and quality parameters that are part of the certificate
must be verified before being used by the mainchain. Another example is the mainchain block
hashes of the epoch boundaries that must be verified to guarantee that the proof refers to the
current epoch and the active chain.

weert_sysdata is represented by the tuple of the following form:

weert_sysdata def (quality, MH(BTList)), H(B! 1), B(i,.)).

last last
where:

quality — the quality parameter from the withdrawal certificate;
MH (BT List) — a root hash of a Merkle tree where leaves are backward transfers from the
BTList provided within the certificate;

H(B Y — a block hash of the last mainchain block in the withdrawal epoch i — 1
(given that the certificate is for the epoch 7);
H(B},) — a block hash of the last mainchain block in the withdrawal epoch i.

The generalized SNARK verifier provides flexibility to implement different SNARKSs for
different sidechain models. For instance, one may want to implement the sidechain with a
centralized cross-chain transfer protocol where withdrawal certificates are verified by a signature
from an authorized entity. Or, conversely, a completely decentralized verifiable sidechain can be
constructed as will be discussed in [5 The Latus Sidechain]).

Succinct proofs and constant time verification make the overall sidechain design particularly
appealing as it does not impose a significant burden for the mainchain.

4.1.2.1 Mainchain Managed Withdrawals

There might be cases when a user would want to request a backward transfer directly from the
mainchain rather than creating a BT in the SC. For instance, it would allow users to withdraw
funds in case of a misbehaving (e.g., maliciously controlled sidechain that censors submission of
backward transfers) or ceased sidechain.

Hence, we introduced two additional mechanisms that allow users to make withdrawals
directly in the mainchain:

1. Backward transfer request (BTR), and
2. Ceased sidechain withdrawal (CSW).

6 A full payload of proofdata is provided during the proof generation as a witness.

14

We consider each of them as a special type of transaction. Similar to withdrawal certificates,
such operations are secured by SNARK proofs.

The BTR is used to withdraw funds from an active sidechain if for some reason a user cannot
create a backward transfer inside the sidechain. The idea is that all BTRs submitted to the
mainchain will be synchronized to the sidechain and processed there to verify their legitimacy
and include the corresponding backward transfers in the next WCert using the standard flow.
Such processing can be enforced by the withdrawal certificate SNARK to force a maliciously
controlled sidechain to process user’s withdrawals’. Importantly, the BTR does not lead to a
direct coin transfer in the mainchain.

The CSW is used to withdraw funds from ceased sidechains. Since withdrawal certificates
are not allowed for ceased sidechains, it becomes the only way to retrieve funds. A valid CSW
makes direct payment to the submitter.

Definition 4.5. Backward transfer request (BTR). The BTR is a generic request for a
backward transfer that is submitted on the mainchain. It is represented by the following tuple:

BTR (ledgerld, receiver, amount, nullifier, proofdata, proof),

where:
ledgerId — an identifier of the sidechain, for which BTR is created;
receiver — an address of the receiver on the mainchain;
amount — the number of coins to be transferred;

nullifier — a unique identifier of claimed coins;
proofdata — input data to a SNARK verifier;
proof — a SNARK proof.

As in the case with a withdrawal certificate, the SNARK for the BTR is defined by the
sidechain and represented by the verification key vkpgr g, which is set upon sidechain registration.

The syntax of the proofdata and proof are the same as for the withdrawal certificate. The
basic interface of the SNARK verifier is the following;:

true/ false < Verify(vkprr, publiciinput, proof),
public_input def (btr_sysdata, MH (proofdata)),
where:
vkprr is a SNARK verification key for the BTR registered upon the sidechain creation;
btr_sysdata, proofdata, M H(-), and proof have the same meaning as similar parameters
in the withdrawal certificate.
btr_sysdata is defined as:

btr_sysdata def (H(By), nullifier, receiver, amount),

where H(B,,) is a block hash of the mainchain block where the latest withdrawal certificate
for this sidechain has been submitted.

Definition 4.6. Ceased Sidechain Withdrawal (CSW). The CSW is an operation that
allows the movement of coins from the ceased sidechain B to the original mainchain A. It is
represented by a tuple of the following form:

csw & (ledgerld, receiver, amount, nullifier, proofdata, proof),

where all parameters have the same meaning as in the case of the BTR.

"Note that it is up to a sidechain construction to define exactly how BTRs are processed (for example, the
Latus sidechain construction [5 The Latus Sidechain] introduces its own method for enforcing BTRs processing).

15

As it can be seen, BTR and CSW have the same structure, though conceptually they are
different because CSW performs direct payment while BTR does not. The interface of the
SNARK verifier for the CSW is completely the same as for the BTR.

Additionally, we discuss the role of nullifiers in both BTR and CSW. In the mainchain, a
nullifier is an abstract identifier of claimed coins. The mainchain will not allow the submission
of two transactions with the same nullifier. The main reason for having the nullifier is to prevent
repeated submission of BTRs or CSWs that try to withdraw the same coins (thus, essentially
doing double spend). Since the mainchain does not maintain the sidechain state, at the very
least, for ceased sidechains, it requires some abstract double-spend prevention mechanism, which
is exactly what is provided by nullifiers.

Note that both BTR and CSW are just complementary operations to allow more flexibility
in some subtle use cases or in the case of a malfunctioning sidechain. It is up to the sidechain
to define how they are used. For instance, one can omit defining these operations at all (e.g.,
by setting vkprr and vkcsw to NULL), thus completely relying on the normal withdrawal
procedure through withdrawal certificates.

4.1.2.2 Withdrawal Safeguard

The safeguard is a special feature introduced to prevent unlimited withdrawals from a
sidechain to the mainchain in the case of the malicious sidechain. The essence of the safeguard
function is to maintain the balance of each created sidechain and to prevent withdrawing an
amount larger than what was previously transferred to that sidechain. A similar idea was
introduced in [13] and [12].

Implementation of the safeguard feature is simple: for each created sidechain, a special
balance variable is maintained by the mainchain. Each forward transfer increases the balance by
the transferred number of coins, and each withdrawal certificate, or ceased sidechain withdrawal
reduces the balance by the withdrawn amount. The WCert and CSW cannot withdraw more
coins than are stored in the sidechain balance.

This feature prevents possible implications of sidechain corruption. It guarantees that only
the transferred number of coins can be withdrawn back to the mainchain. Even in the case of
total corruption or a maliciously constructed sidechain, an adversary cannot mint coins out of
thin air.

4.1.3 Sidechain Transactions Commitment

So far, we defined 4 types of actions (that are either separate transactions or outputs in a regular
transaction) that determine cross-chain communication from the mainchain point of view:

1. Forward Transfer (FT).

2. Withdrawal Certificate (WCert).

3. Backward Transfer Request (BTR).

4. Ceased sidechain withdrawal (CSW).

To facilitate efficient implementation of the synchronization between the mainchain and
sidechains, we modify the structure of a mainchain block header to include an additional value
that commits to all sidechain-related actions in the MC block (except the CSW because it is
used only when the SC is ceased). This value is a root hash of a Merkle tree that contains

16

all transactions or outputs related to any sidechain (see Fig. 4). We call it the Sidechain
Transactions Commitment (SCTxsCommitment).

SCTxsCommitment

SC2Hash

SC3Hash SC4Hash

FT1 sc1 BTR4SC1

Figure 4: Sidechain transactions commitment tree. The root hash h; commits to all sidechain
related transactions (for all sidechains) included in the MC block. All SC XHash, where X is a
sidechain identifier, are ordered by the id and commit to all transactions related to the sidechain
X. WCertHash commits to the WCert for the sidechain X (if present); only one WCert is
allowed for each sidechain. T'xsHash commits to FTs and BTRs.

Having SCTzsCommitment in the MC block header allows SC nodes to synchronize and
verify SC-related transactions without the need to transmit the entire MC block. Also, it allows
the construction of a SNARK proving that all SC-related transactions of the specific MC block
have been processed correctly.

4.2 Bootstrapping Sidechains

We assume that the mainchain implements a special transaction that allows one to create a
sidechain. Such a transaction can be submitted by anyone, and it registers the SC in the
mainchain and sets its unique identifier and some system parameters. Once the sidechain is
created, a schedule of withdrawal epochs is defined deterministically, and forward/backward
transfers must be processed in the mainchain.

The following set of SC parameters are set upon creation:

17

_ Sidechain configuration

ledgerld — a unique identifier of the sidechain that has not been used;

start_block — the block number in the mainchain, from which the first
withdrawal epoch begins; this parameter defines when the
sidechain becomes active;

epoch_len — the length of a withdrawal epoch (in MC blocks);

submit_len — the period length — starting from the first block of the
withdrawal epoch — when a withdrawal certificate for the
previous epoch must be submitted to the mainchain;

weert_vk — a SNARK verification key vk cert for WCert proofs;
btr_vk — a SNARK verification key vkpgrg for BTR proofs;
csw_vk — a SNARK verification key vkcgw for CSW proofs;

wceert_proofdata — the definition of the proofdata structure for the withdrawal
certificate; it defines the number and types of included
data elements;

btr_proofdata — the definition of the proofdata structure for the BTR,;

csw_proofdata — the definition of the proofdata structure for the CSW.

Customizable parameters give flexibility in choosing those, which are suitable for a particular
sidechain. The triplet (cer_vk, btr_vk, csw_vk) is especially important as it defines how the
mainchain verifies backward communication from the sidechain. These keys define SNARKSs for
corresponding operations eventually enabling different designs for sidechains.

5 The Latus Sidechain

In the previous section, we described the general sidechain design. Mostly, it was about defining
the cross-chain transfer protocol, which provides a communication interface with the mainchain.
In this section, we focus on a specific sidechain construction. We give an example of how a
decentralized verifiable sidechain can be built on top of the given CCTP.

The general idea is to utilize a recursive composition of SNARKSs to construct a succinct
proof of the sidechain state progression for the period of a withdrawal epoch. Then, a SNARK
for a withdrawal certificate is constructed so that it proves correct sidechain state transition
for the whole epoch and validates backward transfers. This allows the mainchain to efficiently
verify the sidechain without having to rely on any intermediary — such as certifiers [12] — and
still be oblivious to the sidechain construction and interactions within.

In this section, we provide details of the proposed Latus sidechain that implements decentral-
ized permissionless blockchain Bse with a proof-of-stake based consensus protocol. We consider
Bsc as a simple ledger of payment transactions. We assume that Bse does not possess its own
native asset and, instead, uses only Coin asset transferred from the mainchain by means of the
CCTP. Additionally, we assume that the mainchain is a classical proof-of-work based blockchain
system with Nakamoto consensus [20] (e.g., Horizen [20]).

5.1 Consensus Protocol

We use a similar consensus protocol as in our previous proposal [12] with some minor adjust-
ments. It is based on a modified version of the Ouroboros proof-of-stake consensus protocol [17].

18

In Ouroboros, time is divided into epochs with a predefined number of slots. Each slot is
assigned with a slot leader who is authorized to generate a block during this slot. Slot leaders
of a particular epoch are chosen randomly before the epoch begins from the set of all sidechain
stakeholders (Fig. 5). The protocol operates in a synchronous environment where each slot
takes a specific amount of time (e.g., 20 seconds).

Epoch i Epoch i+1

\:| - submitted block
© - missed block

Figure 5: A general scheme of an epoch. Note that even though there is an assigned slot leader
for each slot, the leader may skip block generation, and in this case, the slot remains empty.

Epoch. An epoch is a sequence of the k successive slots Ep; = (sl s}, ..., slf‘l), where k
is the predefined length of the epoch and 7 is the epoch sequence number.

Slot. A slot is a specific period in time during which a slot leader is authorized to issue
a block. Each slot has the corresponding slot leader who is chosen randomly before the epoch
begins. A slot leader may skip generating a block, in this case, the following block will refer to
the latest generated block. A

Slot Leader. The slot leader of the slot sl is a stakeholder who was authorized by the Slot
Leader Selection Procedure to forge a block at slot sl{ .

Slot Leader Selection Procedure. The slot leader selection procedure Select(SD gy, , rand)
is a procedure that selects all slot leaders of the epoch Ep; according to the fixed stake distri-
bution SDg,, and some random value rand. The stake distribution SDpg,, is fixed before the
epoch Ep; begins. The randomness rand is revealed only after the stake distribution is fixed.

In our construction, we additionally introduce binding with the mainchain. This implies that
sidechain blocks contain references to mainchain blocks so that their history is preserved in the
sidechain. The chain resolution algorithm is altered to enforce that the sidechain follows the
longest mainchain branch.

As a “mainchain block reference”, we consider a whole mainchain block header together with
transactions related to the referencing sidechain.

Sidechain block forgers are obliged to keep mainchain references consistent and ordered when
included in SC blocks. A sidechain block SB; can contain a reference to the mainchain block
B; if and only if

1. the block B; is a valid mainchain block, and

2. references to all previous mainchain blocks By, k € {n,n+1,...,4 — 1} have been already
included in sidechain blocks (also considering the current one, as a sidechain block may
contain more than one reference), where 7 is the genesis reference (Fig. 6).

Even though it is not mandatory for the block forgers to include mainchain references, we
assume that honest block forgers will do this to support the cross-chain transfer protocol between
chains. It is also possible to construct an incentive mechanism for block forgers who include
references. For instance, users who initiate forward/backward transfers may pay some fee from

19

Figure 6: An example of the sidechain binding to the mainchain.

each transaction. The incentive mechanism is beyond the scope of the current paper as we only
provide an example of a sidechain consensus protocol.

The binding to the mainchain provides two important properties of our sidechain construc-
tion:

1. Deterministic synchronization between the MC and the SC. When the sidechain
block SB; refers to the mainchain block Bj, it explicitly acknowledges all transactions
included in the block B;. It means that if B; contains any transactions related to this
sidechain (by transactions, we mean forward transfers and backward transfer requests),
such transactions are immediately included in the sidechain (see Fig. 7).

MC Block i

—|MC Block Header (MBH,
mc_tx'

MC->SC
2
mc_tx<,,«

SC Block j
SC Block Header
| } References to MC
MBHi blocks
tx! Synchronized txs
Me_X wessc } from MC

1
Sc—txzsc Regular SC
sc_tx°g. transactions
Figure 7: An example of transaction synchronization between the mainchain and

the sidechain: MC block B; contains one SC-related transaction metzl; o, g0,
which is also included in the SC block SB; because it refers to B;.

2. Mainchain forks resolution. It is known that Nakamoto consensus does not provide
finality on a chain of blocks [21]. It means that there is always a non-zero probability
that some sub-chain of MC blocks will be reverted and substituted by another sub-chain
with the more cumulative work. Such behaviour is normally handled by the mainchain
but may be disastrous for the sidechain because M C — SC transactions that are already
confirmed in the sidechain may be reverted in the mainchain. The binding eliminates such
situations because in the case of a fork in the MC, SC blocks that refer to forked blocks
in the MC would also be reverted.

Security. The standard procedure for proving blockchain consensus protocol security re-
quires demonstrating the ability of the protocol to satisfy two fundamental properties of a
distributed ledger: liveness and persistence [!1]. Liveness ensures that transactions broad-
casted by honest parties will be eventually included in the ledger, and persistence ensures that
once a transaction is confirmed by one honest node, it will also be confirmed by all other honest

20

nodes (so that eventually it becomes final and immutable). Such properties are usually proven
under certain assumptions, such as honest majority among protocol participants, etc. We refer
the interested readers to the original Ouroboros paper [17] for an exhaustive list of assumptions
and properties analysis.

Since the proposed consensus protocol also incorporates binding with the mainchain, it
implies an additional assumption of the honest hashing power majority in the mainchain.

We suppose that under these assumptions the proposed protocol derives security guarantees
provided by original Ouroboros and Nakamoto consensus protocols.

We want to emphasize that different types of sidechains may adopt different consensus protocols
that better suit specific use cases (e.g., fast coin transferring support). A sidechain consensus
protocol (including the one described in this section) is not the focus of this research and needs
further analysis.

5.1.1 Withdrawal Epochs

As it has been described in section [4.1.2 Backward Transfers], the Cross-Chain Transfer Protocol
introduces the notion of a withdrawal epoch® (WE), which is defined as a fixed-length range
of MC blocks (length is set upon SC creation). The concept of withdrawal epochs is essential
for commanding backward transfers.

Following this design, we also introduce withdrawal epochs in a sidechain which coincide
with the mainchain withdrawal epochs. A WE is defined as a range of SC blocks where the first
and last blocks of the range are determined by references to the first and last MC blocks in the
corresponding withdrawal epoch in the MC (see Fig. 8).

Withdrawal epoch N

~
Withdrawal epoch N

Figure 8: An example of a withdrawal epoch in the sidechain.

Even though a withdrawal epoch in the SC may have variable length (as it depends on when
corresponding MC blocks will be referenced), the binding between chains allows to determinis-
tically define the boundaries of the WE in the sidechain.

More formally, if the withdrawal epoch W EM € of size len in the MC is defined by a sequence
of blocks WEMC = (BY, B}, ..., Bfen_l), then the corresponding withdrawal epoch in the SC
can be determined as:

WE?C = (SBY,SB}, ..., SBY),
where:

~ SBY is an immediate descendant of the block SB} ; which refers to the MC block Bl*"~*
(the last one in the withdrawal epoch WEM¢); and

~ SBF is the block that refers to BL" L.

8Note that withdrawal epochs are independent from epochs in the Ouroboros consensus protocol.

21

Note that to simplify implementation, it might be needed to restrict SC blocks to not refer
to several MC blocks on the boundaries of the withdrawal epoch (i.e., if the SC block refers to
Bl"~! it cannot also refer to the next MC block BY, ;).

It is important to restate that the notion of the withdrawal epoch is independent from epochs
in the Ouroboros consensus protocol.

5.2 Accounting Model and System State

The Latus blockchain adopts the UTXO-based accounting model [21] where the state is repre-
sented by a set of unspent outputs combined into a fixed-size Merkle tree (see Fig. 9). We call
such a tree a Merkle State Tree (MST). Lowercase mst; stands to denote the root hash of
the M ST, tree at the moment ¢.

The depth Djyss7 of the MST tree is a fixed system parameter that also constrains the total
number of UTXOs that can exist in the system to be at most 2P¥s7 (see Fig. 9).

We consider each leaf of the MST as a UTXO slot that can be “occupied” or “empty” at a
given moment. We introduce the deterministic function M ST_Position(utzo;) that returns the
position of some unspent output utzo; if it is included in the tree. Note that the utxo position
does not depend on the current state of the MST.

h,,= H(utxo,) h,g= H(Null)
Lha] Lhe | [P] [Pee] [P] [P] [her | | o]
T T T T T T T T
utxo, @ @ 2] utxo,, 2] utxo, 2]

Figure 9: An example of the Merkle State Tree with Dy;s7 = 3. A leaf of the tree is either an
unspent output or Null value. The tree contains 3 occupied and 5 empty slots. The function
M ST _Position returns the position of a given utzo in the tree, e.g., M ST_Position(utzos) = 4.

The unspent transaction output (UTXO) is defined as a tuple (addr, amount, nonce) where

e addr is an address of the UTXO owner who possesses the corresponding private key
that allows to spent it;

e amount is the number of coins secured by the UTXO; and

e nonce is a unique identifier of the UTXO.

5.2.1 System State

Provided with the MST structure, which is the core of a sidechain state, we define an overall
SC system state at the moment ¢ as a tuple:

state, def (MST;, backward_transfers;),

where backward_transfers is a list of backward transfers initiated in the current withdrawal
epoch. backward_transfers is transient and reset every new withdrawal epoch.

22

5.3 Transactional Model

There are 4 types of transactions defined in the Latus sidechain that realize basic payment
functionality and cross-chain transfer protocol. To simplify the model, we consider them as
logical transactions, though we stress that a real-world implementation can be optimized so
that a single transaction on the blockchain may combine several logical transactions (even with
different types).

The transactions are the following:

. Payment (PTx) — transfers coins within the sidechain.
. Backward Transfer (BTTx) — initiates transfer of coins from the SC to the MC.

1
2
3. Forward Transfers (FTTx) - receives coins transferred from the mainchain.
4

. Backward Transfer Requests (BTRTx) - initiates coin transfer from the SC to the
MC. In contrast to BTTxz, BTRTx contains BTRs initially submitted in the mainchain
and then synchronized to the SC.

Whereas PTz and BTTz are inherently SC-defined transactions (thus, submitted and pro-
cessed in the sidechain), FTTx and BTRTxz are MC-defined transactions (they encapsulate
FTs and BTRs that are initially submitted to the MC). We describe each type in detail in the
following sections.

5.3.1 Payment Transaction

We define a regular payment as a multi-input multi-output transaction [29]:

type PaymentTx {
inputs: List [UTXOJ;
signatures: List [Signature];
outputs: List [UTXO];

}

where:

1. inputs are some unspent outputs from previous transactions, spending of which are au-
thorized by signatures, and

2. the total coin’s value of inputs is equal or greater than the total coin’s value of outputs.
The state transition function update for the payment transaction is defined in the following

way:
state;1 = update(tTpqy, state;),

where state; 1 [backward_trans fers] is unchanged and state; 1 [MST) is derived from state;[M ST
by
1. removing all UTXOs that are inputs in tx,4, and substituting them with Null to produce
MST;; and
2. sequentially adding to M ST, all UTXOs that are outputs in tz,,, according to
M ST _Position(utzo;).

23

5.3.2 Forward Transfers Transaction

Forward transfers allow one to send coins from the mainchain to a sidechain. As such, FTs
are first submitted to the MC and processed there (destroying coins) and then, by means of
deterministic synchronization, are included and processed in the sidechain. Recall from [4.1.1
Forward Transfers] the basic structure of a forward transfer on the mainchain side:

7 & (ledgerld, receiver Metadata, amount).

receiver Metadata is defined by the sidechain construction and in Latus it is just a receiver
address and a payback address on the MC needed in case of transfer failure:

receiversMetadata < (receiver Addr, paybackAddr).

A single MC block may contain several forward transfers related to different sidechains.
The sidechain will synchronize FTs present in the referenced MC block by including a special
ForwardTransfers transaction (FTTx) in the SC block. Such FTTx specifies all forward
transfers from the referenced MC block that are related to this specific sidechain. From the
sidechain perspective, we can consider FTTx as a coinbase transaction (the one that creates
new coins [23]) that is authorized by the mainchain.

We assume that a particular forward transfer may fail so that coins cannot be received by
the sidechain. In this case, coins are sent back to the mainchain by creating a corresponding
backward transfer. It is done automatically upon FTTx execution in the sidechain.

The reasons for FT failure can be different. For instance, FT’s receiver M etadata may be
malformed (recall that the MC does not validate semantics of FT’s receiver M etadata) or some
other sidechain-specific failures occur (e.g., it may happen that M ST _Position(output,e,,) maps
newly created output to an already occupied slot in M ST;, thus causing a collision).

The basic structure of the ForwardTransfers transaction is the following:

type ForwardTransfersTx (mcid: BlockID, ft: List[FT]) {
outputs: List [UTXO];
rejected Transfers : List [Backward Transfer]

where:
mcid — an identifier of the MC block whose forward transfers are
synchronized;
ft — a list of forward transfers from the MC block mcid related to the
sidechain where FTTx occurs;
outputs — outputs created for the transferred coins; each valid forward transfer

spawns a corresponding output with the same amount of coins;

rejectedIransfers — a list of backward transfers for failed forward transfers; each failed
forward transfer spawns a corresponding backward transfer with the
same amount of coins.

The state transition function update for the FTTx is defined in the following way:

state;11 = update(tx pr, state;),

24

where:

1. state;+1[MST] is derived from state;[MST] by sequentially adding all UTXOs that are
outputs in tzpr according to M ST _Position(utxo;);

2. state;iq[backward_transfers] is derived from state;[backward_transfers] by appending
rejectedl'ransfers from txpr.

Note that failed forward transfers are recovered with the backward transfer mechanism
through a withdrawal certificate at the end of the epoch. Recall that the MC knows nothing
about the SC state and cannot know that an FT is failed; thus, we use the standard mechanism
to reclaim coins in the MC.

5.3.3 Backward Transfer Transaction

A backward transfer transaction (BTTx) allows one to create a request for a backward transfer
in the sidechain that will be included in the next withdrawal certificate and then passed and
processed in the mainchain.

type BackwardTransferTx {
inputs: List [UTXOJ;
signatures: List [Signature];
backwardTransfers: List[BackwardTransfer];

}

where:

1. inputs are some unspent outputs from previous transactions (spending of which is autho-
rized by signatures);

2. backwardTransfers are data about receivers of coins on the mainchain side; recall from
[4.1.2 Backward Transfers] that the basic structure of a backward transfer is

Br (receiver Addr, amount);

3. the total coin value of inputs is equal or greater to the total coin value of backward Transfers.

The state transition function update for a backward transfer transaction is defined as:
state;+1 = update(tx g, state;),

where:

1. state;y1[MST)] is derived from state;[MST] by removing all UTXOs that are inputs in
trpr; and

2. state;iq[backward_transfers] is derived from state;[backward_transfers] by appending
backwardIransfers from txpgr.

Essentially, we can consider backwardTransfers in trpgr as specialized outputs that are
unspendable on the sidechain but used to reclaim coins in the mainchain (when transferred by
means of a withdrawal certificate). In this respect, BTTx transaction is a special case of regular
payment transaction where all outputs are backward transfers.

More details about the entire backward transfer flow can be found in [5.5.3 Backward Trans-
fers].

25

5.3.4 Backward Transfer Requests Transaction

The Backward Transfer Request (BTR), which is submitted to the MC, is similar to BTTx in
the sense that it allows one to create a request that will result in a backward transfer in the next
withdrawal certificate if the request is legitimate (e.g., claimed coins were present at the moment
of BTR inclusion in the SC block). The difference from BTTx is that BTR is submitted in the
mainchain and is used in situations when BTTx cannot be used for some reason. Recall from
[4.1.2.1 Mainchain Managed Withdrawals] the basic structure of the BTR on the mainchain
side:

BTR ¢ (ledgerld, receiver, amount, proofdata, proof).

proofdata and SNARK proof are defined by sidechain construction. In Latus, proofdata
contains an unspent output that should be consumed in the SC to provide coins for transferring:

proofdata = {utzo}.

The spending right for the utro should be enforced by the proof which is validated upon
submission in the MC.

Similar to forward transfers, a single MC block may contain several BTRs. The sidechain
synchronizes BTRs by including in the SC block a special Backward TransferRequests transaction
(BTRTx) that contains all BTRs relevant to this sidechain from the referenced MC block. From
a sidechain perspective, we can consider BTRTx as an aggregated transaction where each BTR
represents a separate backward transfer.

Some BTRs from BTRTx may be invalid when they are synced to the sidechain (e.g., a
malicious user may try to spend the same utxo directly in the sidechain before BTR is synced
(double-spend problem). Such BTRs are rejected by the sidechain (rejection means that they
do not spawn corresponding backward transfers and do not affect the state).

The basic BTRTx structure on the SC side is the following;:

type BackwardTransferRequestsTx (mcid: BlockId, btr: List[BTR]) {
inputs: List [UTXOJ;
backward Transfers: List[Backward Transfer];

}

where:
mcid — an identifier of the MC block whose BTRs are synchronized;
btr — a list of backward transfer requests from the MC block mcid related
to this sidechain;
inputs — a combined list of UTXOs derived from btr.proofdata of each valid
BTR;

backwardI'ransfers — a list of backward transfers for valid BTRs.
The state transition function update for a BTRTx transaction is:
state;+1 = update(txpTr, state;),
where:

1. state;+1[MST]is derived from state;[M ST] by removing all UTXOs that are inputs in tx grr;

2. state;q1[backward_transfers] is derived from state;[backward_transfers| by appending
backwardI'ransfers from txgrg.

Note that correct processing of BTRs in the sidechain is to be enforced by a withdrawal
certificate SNARK proof.

26

5.4 State Transition Proof

In [5.3 Transactional Model], we defined four types of transactions that represent basic state
transitions in our sidechain system. Given that all transactions are applied sequentially in an
order defined by blocks containing them, we can consider a merged state transition for a sequence
of transactions from several blocks:

state; v = update([tzy, ..., txy], state;) = update(tzy, update(tzy_1,update(txy, state;)).

In particular, we are interested in merging transitions for the whole withdrawal epoch and
proving that the top-level merged transition is correct. It can be accomplished using the recursive
SNARKS composition for state transitions defined in [Def. 2.5].

The main idea is to construct a single SNARK proof of transition for the whole withdrawal
epoch which then can be attached to a withdrawal certificate proving to the mainchain the valid-
ity of everything that has happened in the sidechain — including certificate backward transfers —
without actually revealing any details except state snapshots (in a form of simple hashes) before
and after transition.

We do not go deeply into the details of the SNARKSs architecture which is quite sophisticated
in this case and requires separate writing to be properly explained; instead, we are going to
provide the basic idea of constructing such proof and how it is going to be used.

Let us denote by s; = H(state;) the hash value that represents state;. Note that it must be
an efficient hashing procedure as it should be implemented for a SNARK arithmetic constraint
system. For instance, we can consider H(-) as a root hash of a Merkle tree that contains all the
data from state;.

Let us assume that for each basic state transition (represented by tzpqy, txrr, txpr, and
trprr) we have a corresponding Base SNARK [Def. 2.5] which proves the correct state transi-
tion for a single tz,, a € {pay, FT, BT, BT R}:

ﬂf“se — Prove(pkf“se, (83 8it1), (t24)),

true/ false < Verify(vkBee (s;, s,41), m2¢).

Also, let us assume that we have a Merge SNARK which takes two proofs of adjacent state
transitions (Base or Merge) and combines them into a single proof:

qrMerge , P?“OU@(pkMerg€7 (51‘7 Si+k), (siﬂ-, 71'{1)7 7'(5))7
true/ false < Verify(vk™er9¢ (s;, s;41), nM€9¢).

where:

e b,c € {Base, Merge};
e 70 proves that there exist such tx1, ..., tx; so that state;,; = update([tx1, ..., tx;], state;);

e 75 proves that there exist such tx 41, ..., txy so that state,y = update([tz;t1, ..., tTk], state;+;).

Provided with this construction, we can recursively build a single SNARK proof of state
transition for a whole withdrawal epoch from the sequence of basic transitions. This process is
visualized in figures 10 and 11.

Figure 10 demonstrates the recursive construction of a state transition proof for a single
sidechain block. Note that the scheme is simplified; in reality, the SNARKS composition is more
sophisticated and the proof itself attests not only for the correctness of basic transitions but also
for the validity of the SC block, the validity of included MC block references, their contiguity,
etc.

27

MB/, reference
base_proof
tXFT (s[a[ej > statejﬂ) merge_proof
b § (statej -> stateﬂ)
[+ GNTISIRIRRS O ase_prooi
BTR (statej+1 -> stateﬂ)
merge_proof
(state, -> state,,)
MB!', reference
1 t base_proof
XFT (statej‘z > sta'(em)::) merge_proof
(state,, -> state,,,)
Xgrg v (sta?ea Se_;p;‘,’;’,g) 2 e merge_proof
BTR j+3 4 (state, -> state,, ;)
Regular SC transactions
base_proof
tX statew > stateﬁs) merge_proof
pay base_proof (state,,, -> state,, ;)
t (st = stte,) oSl
P& base_proof b i
tXBT (state,,; -> state, ;)

Figure 10: Recursive composition of state transition proofs for the whole SC block. At the
bottom level, there are proofs for basic transitions (represented by transactions included in the
block) which are then recursively merged into a single proof.

Figure 11 demonstrates the recursive construction of a state transition proof for an entire
withdrawal epoch. Provided with the proofs of state transitions for blocks from the previous
step, now they are merged to generate a single proof for the whole epoch which is used to
construct a final proof for a withdrawal certificate.

In a nutshell, each withdrawal certificate WCert; for epoch i commits to the new state
statefm produced by applying all blocks belonging to epoch i and proves correct transition from
the statefgnl committed by the previous withdrawal certificate. This also involves proving that
all MC blocks belonging to the withdrawal epoch are referenced and all MC transactions related
to this sidechain are processed. As forward and backward transfers are among basic transitions

they will also be proven.

merge_proof
(state™_ ->:

merge_proof merge_proof
» " (state™ ->state’,) (state'->state’)
Initial state’ len e e Final i
[- S S e inal state' |
. 4 B Al
base_proof base_proof base_proof base_proof [
(state"“enostate‘o) (state‘u->state") (state',->state’,) (state', ->state!)

l SB, SB,

Withdrawal epoch i
Figure 11: Recursive composition of state transition proofs for the whole withdrawal epoch.
State transitions for SC blocks are considered as base transitions though they themselves are

recursively constructed from basic transitions (see Fig. 10).

Again, we stress that this description is greatly simplified just to show the basic idea of
recursive SNARKSs composition for state transitions.

28

5.4.1 Performance and Incentives

Generating a SNARK proof for each basic transition and then merging them together requires
a significant amount of computation. This task cannot be solely levied upon forgers or WCert
issuers. Currently, we are investigating different approaches.

One of the possible solutions is to introduce a special dispatching scheme that assigns gen-
eration of proofs randomly to interested parties who then do these tasks in parallel and submit
generated proofs to the blockchain. An incentive scheme provides a reward for each valid sub-
mission.

We consider this as a separate topic of research which we do not elaborate in this paper.

5.5 Cross-Chain Transfer Protocol

In the previous sections, we described the consensus protocol, accounting model, and trans-
actional model of the proposed sidechain construction. In this section, we will focus on the
structure of the cross-chain transfer protocol on the sidechain side which is based on those
components.

5.5.1 Mainchain Block Reference

In [5.1 Consensus Protocol], we briefly described the synchronization procedure between the
mainchain and sidechain, which relies on MC block referencing. Here, we describe the reference
structure in a more detailed way.

Recall that an MC block header contains the SCTxsCommitment [4.1.3 Sidechain Trans-
actions Commitment] field that commits to all SC-related transactions/outputs in that block:

type MCBlockHeader {
prevBlock: BlockId
height: Int

scTxsCommitment: Hash

}

ScTxsCommitment is a root hash of a Merkle tree where one of the subtrees is the Merkle
tree of transactions related to the sidechain that referenced the block (see Fig. 12).
The structure of the mainchain block reference is the following:

type MCBlockReference {
header: MCBlockHeader
mproof: Option[MerkleProof]
proofOfNoData: Option[MerkleProof]]]
forwardTransfers: Option[FTTx]
btRequests: Option[BTRTX]
weert: Option[WCert)

29

SCTxsCommitment

SC1Hash

SC2Hash SC3Hash

FTHash

FT‘ sc1 BTR“SC.|

Figure 12: An example of the sidechain transactions commitment tree. One of the intermediate
nodes (SC1Hash) is a root hash of the subtree that commits to all transactions related to the
sidechain SC1.

where:
header — a header of the MC block that is referenced;
mproof — optional field: in case the MC block includes at least one transaction

related to this SC, mproof will contain a Merkle proof [Def. 2.2] for
the intermediate node in the sidechain transactions commitment tree
that is a root of a subtree of transactions related to this sidechain (by
the example in Fig. 12: the subtree root for the sidechain SC1 is hs;
and the corresponding Merkle proof is the tuple of nodes {hsz, has});
in case the MC block has no transactions related to this SC, the
mproof must be Null;

proofOfNoData — optional field: in case the MC block has no transactions related to
this SC, proofO f NoData contains the Merkle proof(s) necessary to
prove that this ledgerld was not part of the SCTxsCommitment
tree;

forwardTransfers — optional field: it is either a ForwardTransfers transaction [5.3.2
Forward Transfers Transaction] (if the MC block contains at least
one forward transfer to this sidechain) or otherwise Null;

bt Requests — optional field: it is either a BackwardTransferRequests transaction
[5.3.4 Backward Transfer Requests Transaction] (in case the MC
block contains at least one backward transfer request to this
sidechain) or otherwise Null;

weert — optional field: it is either a withdrawal certificate (in case the MC
block contains the withdrawal certificate related to this sidechain) or
otherwise Null.

Provided with mproof, forward Transfers, btRequests, and wcert fields, the SCTxsCommitment
can be reconstructed and verified against the scTxsCommitment field included in the MC block

30

header. It allows to verify that all SC-related transactions were correctly synchronized from
the MC block without the need to download and verify its body. Moreover, we can construct
a SNARK proving that the MC block reference has been correctly processed and that all SC-
related transactions have been applied — it is an essential part of constructing a state transition
proof for a withdrawal epoch [5.4 State Transition Proof].

5.5.2 Forward Transfers

In [4.1.1 Forward Transfers] and [5.3.2 Forward Transfers Transaction], we have already discussed
most of the details related to the forward transfer design both on the mainchain and sidechain
sides. Here we combine everything.

In general, it looks as follows: an MC to SC transfer is represented by a pair of transactions
which we can consider as “sending” and “receiving”. “Sending” is done on the mainchain side
by means of the forward transfer defined in [4.1.1 Forward Transfers| and “receiving” is done
on the sidechain side by means of aggregated ForwardTransfers transaction defined in [5.3.2
Forward Transfers Transaction]. While “sending” destroys coins in the mainchain, “receiving”
creates the corresponding number of coins in the sidechain.

Forward transfers submitted to the mainchain become available in the sidechain at the
moment the MC block containing them is referenced in the sidechain (see Fig. 13). With the
MC block reference [5.5.1 Mainchain Block Reference], a ForwardTransfers transaction (FTTx)
is included in the SC block (if there are any FTs).

Forward Transfer = (ledgerid, receiverMetadata, amount)

o

Figure 13: Forward transfers syncing from the mainchain to the sidechain.

The consistency of forward transfers included in a sidechain FTTx is verified by recalculating
the FTHash (Fig. 12) and checking the SCTxsCommitment following the procedure described
in [5.5.1 Mainchain Block Reference].

5.5.3 Backward Transfers

In general, backward transfer is a transfer of coins in the opposite direction: from the sidechain
to the mainchain. This operation is more sophisticated and thus requires several sub-protocols
to provide sufficient security and reliability.

There are three ways to withdraw coins from the sidechain to the mainchain:

1. Regular withdrawal is a standard mechanism that is used under normal conditions. It
implies the usage of a backward transfer transaction [5.3.3 Backward Transfer Transac-
tion] and a withdrawal certificate to transfer coins to the mainchain.

2. Backward transfer request is similar to the regular withdrawal with that difference
that it is initially submitted to the mainchain [4.1.2.1 Mainchain Managed Withdrawals]
and then synchronized to the sidechain by means of [5.3.4 Backward Transfer Requests
Transaction]. The coins are transferred to the mainchain with a withdrawal certificate.

31

3. Ceased sidechain withdrawal is a mechanism that is used when the sidechain is
no longer operating. This type of withdrawal does not use withdrawal certificates and
supposes direct handling by the mainchain.

The first two types of withdrawals (regular and BTR) use the standard mechanism for
backward transfers - withdrawal certificate. Most of the details related to their submission
and processing have already been discussed in [4.1.2.1 Mainchain Managed Withdrawals], [5.3.3
Backward Transfer Transaction], and [5.3.4 Backward Transfer Requests Transaction]. The
basic principle is summarized in figure 14.

BTR WCert

includes backward transfers
from both BTRTx and BTTx
MC | BTR | P
' ‘\
H

s | M= E O O O

Figure 14: Withdrawing coins with BT and BTR transactions.

Regular withdrawal. A special BackwardTransfer transaction is submitted to the sidechain
by a user who wants to transfer coins. This transaction destroys coins in the sidechain. At the
end of the withdrawal epoch, all backward transfers are collected in a withdrawal certificate
which is submitted to the mainchain where it is processed, and the corresponding number of
coins is created in the mainchain.

Backward transfer request. BTRs are submitted to the mainchain and synchronized
to the sidechain by means of a Backward TransferRequests transaction (analogously to forward
transfers). The consistency of BTRs included in the sidechain is verified by recalculating the
BTRHash (Fig. 12) and checking its presence in the SCTxsCommitment tree following the
procedure described in [5.5.1 Mainchain Block Reference]. After the BTR is synchronized to
the sidechain, it is processed as regular withdrawal through a withdrawal certificate.

In the following sections, we will discuss more deeply the structure and generation of a with-

drawal certificate and BTR. We will also separately discuss CSW as it is conceptually different
from the first two withdrawal methods.

5.5.3.1 Withdrawal Certificate

Withdrawal certificate is a pivotal component of the backward transfer flow. Recall the basic
structure of a withdrawal certificate that is defined by the mainchain [4.1.2 Backward Transfers|:

WCert < (ledgerld, epochld, quality, BT List, proofdata, proof).
While ledgerld and epochld are global parameters known to the mainchain, the semantics of
quality, proofdata, and proof are defined by the sidechain. The withdrawal certificate is created
once per a withdrawal epoch and includes all backward transfers that have been submitted dur-

ing the epoch.

Quality. The quality parameter is used by the mainchain to determine what WCert should be

32

adopted in case several have been submitted for the same epoch. From the MC side, this is just
an integer value which can be compared with quantities from other certificates. In the Latus
sidechain, we define the quality to be the height of the blockchain up until which the WCert
proves state transition.

Backward Transfers List. BTList is a list of backward transfers collected during a with-
drawal epoch for which the certificate is created:

BT List = state;[backward_trans fers],
where state; is the state of the sidechain after applying the last block in the withdrawal epoch.
Withdrawal certificate proof

Withdrawal certificate proof is a SNARK proof that validates compliance of the certificate
with a set of predefined rules.

As it is defined in [Def. 2.3], a SNARK is a proving system. Its particular instantiation
is specified by a set of arithmetic constraints defining the verification rules. Each sidechain
specifies its own set of constraints for the withdrawal certificate SNARK, thus establishing its
own rules.

The basic interface for the SNARK prover and verifier is the following:

proof < Prove(pkwcert, public_input, witness),
true/ false <— Verify(vkwcert, publiciinput, proof).

A particular instantiation of the SNARK proving system is determined by a pair of keys
— proving key pkwcert and verifying key vky cert. Verifying key is registered upon sidechain
creation and cannot be changed during the SC lifetime. It completely defines the rules of the
withdrawal certificate validation (including the semantics of the public input and witness for
the prover and verifier).

Recall from [Def. 4.4] that public_input for the WCert SNARK is comprised of two parts:

public_input def (weert_sysdata, M H (proofdata)),

where weert_sysdata is a set of arguments enforced directly by the mainchain®:

weert_sysdata def (quality, MT Hash(BT List), H(B/> '), H(B}.,,));

len

and proofdata is a set of arguments defined by the sidechain construction and passed along the
withdrawal certificate. In the Latus sidechain, it is defined as follows:

proofdata e (H(SBliast),H(stateSBli [MST]), mst_delta),

st

where

H(SBj..,) — a hash of the last sidechain block in the epoch ¢ for which the
certificate is created;

H(stateg Bi . [MST)) — a root hash of the MST tree derived after applying SB;,.,; note
that by including H(StatGSB;Mt [MST]) in proofdata, the
withdrawal certificate commits to the updated sidechain state;

mst_delta — a bit vector of MST modifications; given that the MST is a fixed
size Merkle tree, mst_delta is also a fixed-size bit vector where each
bit represents a particular leaf in the tree; the bit is set to “1” if the
MST leaf has been modified at least once during the epoch,

otherwise it is “0” (see example in [Appendix A]).

9These arguments are explained in [4.1.2 Backward Transfers]

33

mst_delta is used for proving that some utxro has not been spent since some moment in
the past (this is particularly useful for preventing data availability attacks as it allows creating
mainchain managed withdrawals without knowing the current sidechain state). E.g., to prove
this, one would need to provide a utro together with a Merkle proof of its inclusion in some
stateggr [MST] committed in one of the previous certificates and a list of mst_delta’s from
the follozx;ing certificates where the corresponding bit has not been triggered to “1”.

In the Latus sidechain construction, a withdrawal certificate proof enforces the following rules:
~ WCert SNARK Statement

e SB! . isthe last block of the withdrawal epoch i for which the certificate is created.

° SBliaS
valid chain of blocks.

, is connected to the SB;;; from the previous withdrawal certificate by a

. H(stateSB; ‘t[MST]) is a valid root of the MST for stategp: .

i—1
last

e Assuming that after applying the block SB;,_; the sidechain state is stategzi-1 and

last

after the block SBj, ., the state is stateg Bi . the proof verifies correct transition
from stategpi-1 to stateg Bi which means that all transactions from the subchain
last as

[SBi, ..., SBlia;t] are correctly processed according to the rules from [5.3 Transac-
tional Model].

e MC blocks from range [B{,..., B},] are referenced from the sidechain blocks
[SBE,...,SB},,] (this also implies that all SC-related transactions from these blocks
have been processed).

e BTList is a wvalid list of backward transfers that corresponds to
stategpi [backward_transfers].

o quality parameter is the height of the block SB}

last*

e mst_delta is a bit vector that reflects changes in MST between stateg pi—1 [MST]
last
and stategp; [MST].

t

In general, a withdrawal certificate proof validates correct transition for a range of blocks
that belongs to the withdrawal epoch and that this range is adjacent to the range committed in
the previous withdrawal certificate. This includes proving the correctness of backward transfers.

Given that all state transitions are proved, it becomes infeasible to create a malicious back-
ward transfer (without creating a corresponding transaction in the sidechain), and it is infeasible
to create new coins on the sidechains without real forward transfers.

5.5.3.2 Backward Transfer Request

In [5.3.4 Backward Transfer Requests Transaction], we have already discussed how BTRs
are submitted and processed in the sidechain. Here, we only provide details about the SNARK
proof included in a BTR.

Recall that the BTR structure has been defined as follows [Def. 4.5]:

BTR ¥ (ledgerld, receiver, amount, nullifier, proofdata, proof).

34

proofdata is defined by the Latus construction as:
proofdata = {utzo},

where utro is an unspent output that holds coins that a user wants to withdraw. The basic
idea is that the proof should validate the user’s right to withdraw this utxo and that this utxo
is present in the sidechain state MST committed by the last withdrawal certificate included in
the mainchain.

Note that the BTR SNARK proof is validated by the mainchain upon BTR submission.
Even though it verifies that the withdrawn utzo has been present in the last committed SC
state, it cannot guarantee that it will remain valid at the moment BTR will be synchronized
to the sidechain. This proof serves more like a pre-validation for the BTR in the mainchain to
impede submission of wittingly invalid requests.

The basic interface for the SNARK prover and verifier is the following [Def. 4.5]:

proof < Prove(pkprr, publiciinput, witness),
true/ false < Verify(vkprr, publiciinput, proof).

The verifying key vkprpr is registered upon sidechain creation. It defines the rules of the
BTR validation (including the semantics of the public input and witness for the prover and
verifier).

The public_input comprises two parts [Def. 4.5]:

public_input def (btr_sysdata, MH (proofdata)),
btr_sysdata def (H(By), nullifier, receiver, amount)),
where H(B,,) is the hash of the MC block with the latest withdrawal certificate (at the moment
when BTR is included in the mainchain), receiver, amount, and nullifier are taken from the
BTR itself. Note that btr_sysdata is enforced by the mainchain so its parameters cannot be
manipulated by the BTR issuer.
A BTR proof enforces the following rules:

_BTR SNARK Statement

e H(B,) is the hash of the mainchain block where the last certificate WCert,, has
been submitted for this sidechain.

o utxo € state,,[MST], where state,,[M ST] has been committed in WCert,,.

e The BTR issuer has rights to spend this utzo (i.e., possesses the corresponding
private key).

e amount is equal to the utxo.amount.
e nullifier is the hash of the utxo.

e recetver is the address of the receiver in the mainchain.

5.5.3.3 Ceased Sidechain Withdrawal

CSWs are used to allow sidechain stakeholders to withdraw coins from a ceased sidechain.

35

As it has been defined in [Def. 4.6], a ceased sidechain withdrawal is submitted to the
mainchain as a special transaction and performs a direct payment in the mainchain. Recall the
basic structure of the ceased sidechain withdrawal that is defined by the mainchain [Def. 4.6]:

csw (ledgerId, receiver, amount, nullifier, proofdata, proof).

The main prerequisite for CSW validity is the existence of the claimed coins in the sidechain
state committed by the last withdrawal certificate. A sidechain user should point to the specific
unspent output from statesp; [M ST] and authorize its spending. Basically, it is the same
SNARK that is used for the BTR [5.5.3.2 Backward Transfer Request]; the difference is that
now it authorizes direct payment in the mainchain, whereas in the BTR, it is essentially a
pre-validation.

We will not dive deeply into the SNARK construction for the CSW as technically it is
completely the same as for the BTR.

In general, the CSW proof validates that a submitter owns the utxo with a particular amount
of coins at the moment of the sidechain halt. Also, it enforces a nullifier which is a unique
identifier of the withdrawn utxo. Nullifiers are tracked by the mainchain to prevent withdrawal
of the same coins twice.

6 Conclusions

The concept of sidechains has been acknowledged as an appealing solution for enhancing ex-
isting blockchain systems. It allows creating platforms and applications that are bound to the
mainchain without imposing significant burden. Yet, we have not seen wide adoption of this
concept. We believe that the value of sidechains as a scalability solution is underestimated and
seek to develop this area.

In this paper, we introduced Zendoo, a universal construction for blockchain systems that
enables the creation and communication with different sidechains without knowing their internal
structure. We also provided a specific sidechain construction, Latus, that leverages zk-SNARK
techniques to establish decentralized and verifiable cross-chain transfers.

We consider this as a research paper whose subject is still under ongoing research. In future
publications, we plan to uncover more details about specific components and properties of the
proposed sidechain construction.

7 Acknowledgments

We would like to express great appreciation to Maurizio Binello and Andrey Sobol for partici-
pating in technical discussions.

We would also like to thank Rob Viglione, Daniele Di Benedetto, Marcelo Kaihara, Luca
Cermelli, and Lyudmila Kovalchuk for reviewing and providing valuable comments.

References

[1] Cosmos network, 2018. https://cosmos.network/docs/.

[2] Ethereum. a next-generation smart contract and decentralized application platform., 2018.
https://github.com/ethereum/wiki/wiki/White-Paper.

36

 https://cosmos.network/docs/
https://github.com/ethereum/wiki/wiki/White-Paper

3]
[4]
[5]

[10]

[11]

[13]

[14]

[15]

Rootstock: smart contracts on bitcoin network, 2018. https://www.rsk.co/.
Andreas M. Antonopoulos. Mastering bitcoin (second edition). O’Reilly Media, Inc., 2017.

A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller, A. Poelstra,
J. Timén, and P. Wuille. Enabling blockchain innovations with pegged sidechains, 2014.
https://blockstream.com/sidechains.pdf.

Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-
interactive zero knowledge for a von neumann architecture. Cryptology ePrint Archive,
Report 2013/879, 2013.

Sean Bowe and Ariel Gabizon. Making groth’s zk-snark simulation extractable in the
random oracle model. TACR, Cryptology ePrint Archive, 2018:187, 2018.

Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive proof composition without
a trusted setup. Cryptology ePrint Archive, Report 2019/1021, 2019. https://eprint.
iacr.org/2019/1021.

J. Dilley, A. Poelstra, and J. Wilkins. Strong federations: An interoperable blockchain
solution to centralized third party risks. arXiv:1612.05491, 2016. https://arxiv.org/
abs/1612.05491.

Croman K. et al., editor. On Scaling Decentralized Blockchains, volume 9604 of Financial
Cryptography and Data Security, Lecture Notes in Computer Science. Springer, 07 2016.

Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Anal-
ysis and applications. Advances in Cryptology - EUROCRYPT 2015. Lecture Notes in
Computer Science, vol 9057. Springer, Berlin, Heidelberg, 2015.

Alberto Garoffolo and Robert Viglione. Sidechains: Decoupled consensus between chains.
arXiv:1812.05441, 2018. https://arxiv.org/abs/1812.05441

P. Gazi, A. Kiayias, and D. Zindros. Proof-of-stake sidechains. Proceedings of the IEEE
Symposium on Security & Privacy. IEEE Computer Society Press, 2019.

Alex Gluchowski. Zk rollup: scaling with zero-knowledge proofs. Matter Labs, 2019. https:
//pandax-statics.oss-cn-shenzhen.aliyuncs.com/statics/1221233526992813.pdf.

Oded Goldreich. The foundations of cryptography - volume 1, basic techniques. Cambridge
University Press, 2001.

A. Kiayias and D. Zindros. Proof-of-work sidechains. Cryptology ePrint Archive, Report
2018/1048, 2018. https://eprint.iacr.org/2018/1048.

Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. CRYPTO 2017, Part I, volume 10401
of LNCS, pages 357-388. Springer, Heidelberg, 2017.

S. Lerner. Drivechains, sidechains and hybrid 2-way peg designs., 2016. https://docs.
rsk.co/Drive chains_Sidechains_and_Hybrid_2-way_peg_Designs_R9.pdf.

Izaak Meckler and Evan Shapiro. Coda : Decentralized cryptocurrency at scale, 2018.
https://cdn.codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-0.pdf.

37

https://www.rsk.co/
 https://blockstream.com/sidechains.pdf.
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2019/1021
https://arxiv.org/abs/1612.05491
https://arxiv.org/abs/1612.05491
https://arxiv.org/abs/1812.05441
https://pandax-statics.oss-cn-shenzhen.aliyuncs.com/statics/1221233526992813.pdf
https://pandax-statics.oss-cn-shenzhen.aliyuncs.com/statics/1221233526992813.pdf
https://eprint.iacr.org/2018/1048
https://docs.rsk.co/Drivechains_Sidechains_and_Hybrid_2-way_peg_Designs_R9.pdf
https://docs.rsk.co/Drivechains_Sidechains_and_Hybrid_2-way_peg_Designs_R9.pdf
https://cdn.codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-0.pdf

[20] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. https:
//bitcoin.org/bitcoin.pdf.

[21] Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven Goldfeder.
Bitcoin and cryptocurrency technologies: A comprehensive introduction. Princeton Uni-
versity Press, Princeton, NJ, USA, 2016.

[22] J. Poon and V. Buterin. Plasma: Scalable autonomous smart contracts. http://plasma.
io/.

[23] Merkle R.C. A digital signature based on a conventional encryption function. Advances
in Cryptology — CRYPTO 1987. Lecture Notes in Computer Science, vol 293. Springer,
Berlin, Heidelberg, 1988.

[24] Nicholas Stifter, Aljosha Judmayer, Philipp Schindler, Alexei Zamyatin, and Edgar Weippl.
Agreement with satoshi — on the formalization of nakamoto consensus. Cryptology ePrint
Archive, Report 2018/400, 2018. https://eprint.iacr.org/2018/400

[25] P. Sztorc. Drivechain - the simple two way peg, november 2015., 2015. http://www.
truthcoin.info/blog/drivechain/.

[26] The Horizen Team and Community. Horizen: A blockchain platform for fully customiz-
able decentralized applications, 2019. https://www.horizen.global/assets/files/
Horizen-White-Paper.pdf.

[27] S. Thomas and E. Schwartz. A protocol for interledger payments, 2016. https:
//interledger.org/interledger.pdf.

[28] Bitcoin Wiki. Coinbase. https://en.bitcoin.it/wiki/Coinbase.
[29] Bitcoin Wiki. Transaction. https://en.bitcoin.it/wiki/Transaction.

[30] Gavin Wood. Polkadot:vision for a heterogeneous multi-chain framework, 2016. https:
//polkadot.network/Polkadot-lightpaper.pdf.

Appendix A MST Delta

Here, we provide an example of how the mst_delta value from a withdrawal certificate [5.5.3.1
Withdrawal Certificate] is calculated and give some explanations on why it is needed. Note that
this relates only to the Latus sidechain construction.

In general, mst_delta shows which leaves have been changed between two Merkle state trees
[5.2 Accounting Model and System State] M ST; and M ST}, i < j (e.g., in case of a withdrawal
certificate, these are MSTs committed by the previous certificate and the current one which
shows how the system state changed during the epoch). mst_delta is a bit vector that shows
what leaves of the M ST; have been changed in MST}.

Let us consider the MST of depth Dj;sr = 3 which has an initial state M STy (see Fig. 15).

The MST can contain up to eight unspent outputs (equal to the number of leaves). At the
moment M STy, the tree contains three UTXOs {utzoy, utzog, utzos} which are assigned to leaf
nodes 0, 4, 6 correspondingly.

38

 https://bitcoin.org/bitcoin.pdf
 https://bitcoin.org/bitcoin.pdf
 http://plasma.io/
 http://plasma.io/
https://eprint.iacr.org/2018/400
 http://www.truthcoin.info/blog/drivechain/.
 http://www.truthcoin.info/blog/drivechain/.
https://www.horizen.global/assets/files/Horizen-White-Paper.pdf
https://www.horizen.global/assets/files/Horizen-White-Paper.pdf
 https://interledger.org/interledger.pdf
 https://interledger.org/interledger.pdf
https://en.bitcoin.it/wiki/Coinbase
https://en.bitcoin.it/wiki/Transaction
 https://polkadot.network/Polkadot-lightpaper.pdf
 https://polkadot.network/Polkadot-lightpaper.pdf

o] [|

utxo, (val=3)

a N

| [3] [3] (5] [&] [7]
2 utxoy(val=3) @ utxo,(val=1) @

Figure 15: Merkle state tree M ST.

Let us assume that we have two transactions tx; and tzs such that:
tx1 = {

inputs: {utxol}

outputs: {utxo4(val=2), utxob(val=3)}

}

tx2 = {
inputs: {utxo4}
outputs: {utxo6(val=2)}

Assuming that M ST _Position(utxos) = 1, M ST_Position(utzos) = 2, and
M ST _Position(utzog) = 7, applying transactions tx; and txs to the state M ST, will provide
the following M STy:

o) [[2] [3] [5] 3] [7]
2 utxo,(val=2) utxo (val=3) @ 2

utxo,(val=3) utxo,(val=1) utxo,(val=2)

Figure 16: Merkle state tree M ST}.

It can be seen that during the transition from M STy to M STy, the leaves 0, 1, 2, 7 have
been modified. Thus, the msd_delta reflects these modifications in the bit vector:

mst_delta = (11100001),

where each bit represents whether a corresponding leaf node has been modified.

Having mst_delta in each withdrawal certificate allows to prove that some utzo, is contained in
M STy, committed by the latest certificate, by providing proof of inclusion in some M ST}, t < k,

39

committed by the certificate in the past, and verifying that the bit M ST _Position(utzo,) is
zero for all mst_delta’s on the way from MST; to MSTy.

This feature is of great value for circumventing data availability attacks, e.g., when a com-
promised sidechain (where the majority of stakeholders is adversarial) submits a withdrawal
certificate to the mainchain that commits to some M ST}, while not revealing to the public the
M STy, tree itself. Having mst_delta in place, a user will be able to create proof of utxo ownership
by using some previous M STy. This mechanism is used for proving utxo ownership in mainchain
managed withdrawals in the Latus sidechain construction ([5.5.3.2 Backward Transfer Request],
[5.5.3.3 Ceased Sidechain Withdrawal]).

40

	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Cryptographic Definitions
	2.2 Recursive SNARKs Composition for State Transitions

	3 General Overview
	3.1 Main Components of a Sidechain Design

	4 Zendoo: a Cross-Chain Transfer Protocol for Sidechains
	4.1 Cross-Chain Transfer Protocol
	4.1.1 Forward Transfers
	4.1.2 Backward Transfers
	4.1.2.1 Mainchain Managed Withdrawals
	4.1.2.2 Withdrawal Safeguard

	4.1.3 Sidechain Transactions Commitment

	4.2 Bootstrapping Sidechains

	5 The Latus Sidechain
	5.1 Consensus Protocol
	5.1.1 Withdrawal Epochs

	5.2 Accounting Model and System State
	5.2.1 System State

	5.3 Transactional Model
	5.3.1 Payment Transaction
	5.3.2 Forward Transfers Transaction
	5.3.3 Backward Transfer Transaction
	5.3.4 Backward Transfer Requests Transaction

	5.4 State Transition Proof
	5.4.1 Performance and Incentives

	5.5 Cross-Chain Transfer Protocol
	5.5.1 Mainchain Block Reference
	5.5.2 Forward Transfers
	5.5.3 Backward Transfers
	5.5.3.1 Withdrawal Certificate
	5.5.3.2 Backward Transfer Request
	5.5.3.3 Ceased Sidechain Withdrawal

	6 Conclusions
	7 Acknowledgments
	Appendix A MST Delta

